/* This code is public-domain - it is based on libcrypt * placed in the public domain by Wei Dai and other contributors. */ /* http://oauth.googlecode.com/svn/code/c/liboauth/src/sha1.c */ #include <tcl.h> #include <sys/types.h> #include <sys/stat.h> #include <unistd.h> #include <stdint.h> #include <string.h> #include <fcntl.h> #ifdef __BIG_ENDIAN__ # define SHA_BIG_ENDIAN #elif defined __LITTLE_ENDIAN__ #elif defined __BYTE_ORDER # if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ # define SHA_BIG_ENDIAN # endif #else /* ! defined __LITTLE_ENDIAN__ */ # include <endian.h> /* machine/endian.h */ # if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ # define SHA_BIG_ENDIAN # endif #endif /* header */ #define HASH_LENGTH 20 #define BLOCK_LENGTH 64 typedef struct sha1info { uint32_t buffer[BLOCK_LENGTH / 4]; uint32_t state[HASH_LENGTH / 4]; uint32_t byteCount; uint8_t bufferOffset; uint8_t keyBuffer[BLOCK_LENGTH]; uint8_t innerHash[HASH_LENGTH]; } sha1info; /* public API - prototypes - TODO: doxygen*/ /** */ static void sha1_init(sha1info *s); /** */ static void sha1_writebyte(sha1info *s, uint8_t data); /** */ static void sha1_write(sha1info *s, const char *data, size_t len); /** */ static uint8_t *sha1_result(sha1info *s); /** */ static void sha1_initHmac(sha1info *s, const uint8_t *key, int keyLength); /** */ static uint8_t *sha1_resultHmac(sha1info *s); /* code */ #define SHA1_K0 0x5a827999 #define SHA1_K20 0x6ed9eba1 #define SHA1_K40 0x8f1bbcdc #define SHA1_K60 0xca62c1d6 static void sha1_init(sha1info *s) { s->state[0] = 0x67452301; s->state[1] = 0xefcdab89; s->state[2] = 0x98badcfe; s->state[3] = 0x10325476; s->state[4] = 0xc3d2e1f0; s->byteCount = 0; s->bufferOffset = 0; } static uint32_t sha1_rol32(uint32_t number, uint8_t bits) { return ((number << bits) | (number >> (32 - bits))); } static void sha1_hashBlock(sha1info *s) { uint8_t i; uint32_t a, b, c, d, e, t; a = s->state[0]; b = s->state[1]; c = s->state[2]; d = s->state[3]; e = s->state[4]; for (i = 0; i < 80; i++) { if (i >= 16) { t = s->buffer[(i + 13) & 15] ^ s->buffer[(i + 8) & 15] ^ s->buffer[(i + 2) & 15] ^ s->buffer[i & 15]; s->buffer[i & 15] = sha1_rol32(t, 1); } if (i < 20) { t = (d ^ (b & (c ^ d))) + SHA1_K0; } else if (i < 40) { t = (b ^ c ^ d) + SHA1_K20; } else if (i < 60) { t = ((b & c) | (d & (b | c))) + SHA1_K40; } else { t = (b ^ c ^ d) + SHA1_K60; } t += sha1_rol32(a, 5) + e + s->buffer[i & 15]; e = d; d = c; c = sha1_rol32(b, 30); b = a; a = t; } s->state[0] += a; s->state[1] += b; s->state[2] += c; s->state[3] += d; s->state[4] += e; } static void sha1_addUncounted(sha1info *s, uint8_t data) { uint8_t * const b = (uint8_t *) s->buffer; #ifdef SHA_BIG_ENDIAN b[s->bufferOffset] = data; #else b[s->bufferOffset ^ 3] = data; #endif s->bufferOffset++; if (s->bufferOffset == BLOCK_LENGTH) { sha1_hashBlock(s); s->bufferOffset = 0; } } static void sha1_writebyte(sha1info *s, uint8_t data) { ++s->byteCount; sha1_addUncounted(s, data); } static void sha1_write(sha1info *s, const char *data, size_t len) { for (; len--; ) { sha1_writebyte(s, (uint8_t) *data++); } } static void sha1_pad(sha1info *s) { /* Implement SHA-1 padding (fips180-2 ยง5.1.1) */ /* Pad with 0x80 followed by 0x00 until the end of the block */ sha1_addUncounted(s, 0x80); while (s->bufferOffset != 56) { sha1_addUncounted(s, 0x00); } /* Append length in the last 8 bytes */ sha1_addUncounted(s, 0); /* We're only using 32 bit lengths */ sha1_addUncounted(s, 0); /* But SHA-1 supports 64 bit lengths */ sha1_addUncounted(s, 0); /* So zero pad the top bits */ sha1_addUncounted(s, s->byteCount >> 29); /* Shifting to multiply by 8 */ sha1_addUncounted(s, s->byteCount >> 21); /* as SHA-1 supports bitstreams as well as */ sha1_addUncounted(s, s->byteCount >> 13); /* byte. */ sha1_addUncounted(s, s->byteCount >> 5); sha1_addUncounted(s, s->byteCount << 3); } static uint8_t *sha1_result(sha1info *s) { int i; /* Pad to complete the last block */ sha1_pad(s); #ifndef SHA_BIG_ENDIAN /* Swap byte order back */ for (i = 0; i < 5; i++) { s->state[i]= (((s->state[i]) << 24) & 0xff000000) | (((s->state[i]) << 8) & 0x00ff0000) | (((s->state[i]) >> 8) & 0x0000ff00) | (((s->state[i]) >> 24) & 0x000000ff); } #endif /* Return pointer to hash (20 characters) */ return((uint8_t *) s->state); } #define HMAC_IPAD 0x36 #define HMAC_OPAD 0x5c static void sha1_initHmac(sha1info *s, const uint8_t *key, int keyLength) { uint8_t i; memset(s->keyBuffer, 0, BLOCK_LENGTH); if (keyLength > BLOCK_LENGTH) { /* Hash long keys */ sha1_init(s); for (; keyLength--; ) { sha1_writebyte(s, *key++); } memcpy(s->keyBuffer, sha1_result(s), HASH_LENGTH); } else { /* Block length keys are used as is */ memcpy(s->keyBuffer, key, keyLength); } /* Start inner hash */ sha1_init(s); for (i=0; i<BLOCK_LENGTH; i++) { sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_IPAD); } return; } static uint8_t *sha1_resultHmac(sha1info *s) { uint8_t i; /* Complete inner hash */ memcpy(s->innerHash, sha1_result(s), HASH_LENGTH); /* Calculate outer hash */ sha1_init(s); for (i = 0; i < BLOCK_LENGTH; i++) { sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_OPAD); } for (i = 0; i < HASH_LENGTH; i++) { sha1_writebyte(s, s->innerHash[i]); } return(sha1_result(s)); } static Tcl_Obj* c_sha1__sha1_file(char* file) { sha1info sha1; uint8_t buf[4096]; int fd; ssize_t read_ret; Tcl_Obj *ret; fd = open(file, O_RDONLY); if (fd < 0) { return(NULL); } sha1_init(&sha1); while (1) { read_ret = read(fd, buf, sizeof(buf)); if (read_ret == 0) { break; } if (read_ret < 0) { close(fd); return(NULL); } sha1_write(&sha1, buf, read_ret); } close(fd); sha1_result(&sha1); ret = Tcl_NewByteArrayObj(sha1_result(&sha1), HASH_LENGTH); return(ret); } static int tcl_sha1__sha1_file(ClientData dummy, Tcl_Interp *ip, int objc, Tcl_Obj *CONST objv[]) { char* _file; Tcl_Obj* rv; if (objc != 2) { Tcl_WrongNumArgs(ip, 1, objv, "file"); return TCL_ERROR; } _file = Tcl_GetString(objv[1]); rv = c_sha1__sha1_file(_file); if (rv == NULL) { return(TCL_ERROR); } Tcl_SetObjResult(ip, rv); Tcl_DecrRefCount(rv); return TCL_OK; } static Tcl_Obj* c_sha1__sha1_string(Tcl_Obj* str) { sha1info sha1; unsigned char *buf; int buf_len; Tcl_Obj *ret; sha1_init(&sha1); buf = Tcl_GetByteArrayFromObj(str, &buf_len); if (buf == NULL) { return(NULL); } sha1_write(&sha1, buf, buf_len); sha1_result(&sha1); ret = Tcl_NewByteArrayObj(sha1_result(&sha1), HASH_LENGTH); return(ret); } static int tcl_sha1__sha1_string(ClientData dummy, Tcl_Interp *ip, int objc, Tcl_Obj *CONST objv[]) { Tcl_Obj* _str; Tcl_Obj* rv; if (objc != 2) { Tcl_WrongNumArgs(ip, 1, objv, "str"); return TCL_ERROR; } _str = objv[1]; rv = c_sha1__sha1_string(_str); if (rv == NULL) { return(TCL_ERROR); } Tcl_SetObjResult(ip, rv); Tcl_DecrRefCount(rv); return TCL_OK; } int Sha1_Init(Tcl_Interp *interp) { #ifdef USE_TCL_STUBS if (Tcl_InitStubs(interp, TCL_VERSION, 0) == 0L) { return TCL_ERROR; } #endif Tcl_CreateObjCommand(interp, "sha1::_sha1_file", tcl_sha1__sha1_file, NULL, NULL); Tcl_CreateObjCommand(interp, "sha1::_sha1_string", tcl_sha1__sha1_string, NULL, NULL); Tcl_PkgProvide(interp, "sha1", "1.0"); return(TCL_OK); }